
CS 4530: Fundamentals of Software Engineering
Module 13: Continuous Development

Adeel Bhutta, Joydeep Mitra and Mitch Wand
Khoury College of Computer Sciences

1

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Learning objectives for this lesson
• By the end of this lesson, you should be

able to…
• Describe how continuous integration helps to

catch errors sooner in the software lifecycle
• Describe strategies for performing quality-

assurance on software as and after it is delivered
• Understand how continuous delivery can work

with or without TDD (test driven development) as
a quality assurance strategy

Review: The Agile Model Reduces Risk by
Embracing Change (~2000)
• The Waterfall philosophy:

• "The project is too large and complex, and it will take months
(or years!) to plan, so once we come up with the plan, that
plan can not change"

• Reduce risk by proceeding in stages
• The Agile philosophy:

• The project is too large and complex, it is unlikely that we will
know exactly what we need right now, and to some extent,
we are inventing something new. We think that as we make
it, we will figure it out as we go”

• Reduce risk by limiting time on any one stage; then reassess.
(“time-boxing”)

• Reduce risk through automated testing

3

Agile relies on a variety of quality-assurance
processes
• What are the costs & benefits of each of these?

• unit testing/TDD
• code review
• integration tests (as in module 12)
• continuous integration
• continuous deployment (A/B, canaries, etc.)

• How is each automatable?
• How does each address non-functional quality attributes?
• How should these be combined in an organization's

software development process?

4

In this module, we'll focus on CI/CD
• What are the costs & benefits of each of these?

• unit testing/TDD
• code review
• integration tests (as in module 12)
• continuous integration
• continuous deployment (A/B, canaries, etc.)

• How is each automatable?
• How does each address non-functional quality attributes?
• How should these be combined in an organization's

software development process?

5

Example: Some bugs slip through testing,
even in highly-regulated industries

6https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/

“That morning, a software bug in an update to the
DynamicSource tool caused it to provide seriously undervalued
weights for the airplanes.

The Alaska 737 captain said the data was on the order of 20,000
to 30,000 pounds light. With the total weight of those jets at
150,000 to 170,000 pounds, the error was enough to skew the
engine thrust and speed settings.

Both planes headed down the runway with less power and at
lower speed than they should have. And with the jets judged
lighter than they actually were, the pilots rotated too early

Both the Max 9 and 737-900ER have long passenger cabins,
which makes them more vulnerable to a tail strike when the nose
comes up too soon.” …

… “A quick interim fix proved easy: When operations staff turned
off the automatic uplink of the data to the aircraft and switched
to manual requests “we didn’t have the bug anymore.”

Peyton said his team also checked the integrity of the calculation
itself before lifting the stoppage. All that was accomplished in 20
minutes.

The software code was permanently repaired about five hours
later.

Peyton added that even though the update to the
DynamicSource software had been tested over an extended
period, the bug was missed because it only presented when
many aircraft at the same time were using the system.

Subsequently, a test of the software under high demand was
developed.”

Photo: saiters_photography (IG, different plane/airpot)

https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/
https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/

CI/CD practices improve code quality and
dev velocity
• Continuous integration: use automated

systems to perform and monitor frequent
integrations with entire codebase, running
integration-scale tests

• Continuous delivery: use automated systems
to perform frequent, controlled delivery of
product (often to a small fraction of the user
base), with automated monitoring to detect
remaining defects quickly.

13.1: Continuous Integration

8

Continuous Integration (CI) provides global
feedback on local changes

• Given: Our systems involve many components, some of
which might even be in different version control
repositories

• Consider: How does a developer get feedback on their
(local) change?

A CI process is a software pipeline

0…………….

Code Review Style Check

Compile

Unit Test

Prepare
Deployment

Integration Test

Load Test

Automate this centrally, provide a central record of results

KPIsEnd-to-end Test

Develop Build Test Deploy Monitor

CI may be triggered by commits, pull
requests, or other actions
Example: Small scale CI, with a service like CircleCI,
GitHub Actions or TravisCI

commits code to

Developer

GitHub

TravisCI

checks for updates

Runs build for each
commit

GitHub
ActionsCircleCI

Automating Feedback Loops is Powerful
Consider tasks that are done by dozens of developers

(e.g. testing/deployment)

© Randal Munroe/xkcd, licensed CC-BY-SA
https://xkcd.com/1205/

https://xkcd.com/1205/

Typical CI pipeline
• Set up testing environment
• Set up tests
• Set up multiple input
• Run all tests against all inputs

• (preferably in parallel)

• Record results and performance in central
db

13

Combine

Result

Stage 3 Stage 3 Stage 3 Stage 3 Stage 3

Stage 2 Stage 2 Stage 2 Stage 2 Stage 2

Stage 1 Stage 1 Stage 1 Stage 1 Stage 1

Partition

Big Data (lots of work)

You could set up multiple CI processes
• Run a short test daily

• or oftener
• maybe on every commit?

• More comprehensive test less often
• provides more accurate performance data

• Either way, you know that your integration is
working!

14

Continuous Integration is Highly
Configurable
• Determining how to apply CI can be non-trivial for a larger project,

all with a cost vs quality tradeoff: what is the cost of automation vs
the value of developer time?

• Do we integrate changes immediately, or do a pre-commit test?
• Which tests do we run when we integrate?
• When do we integrate code review?
• How do we compose the system under test

at each point?
Changed code

My Social Network App
Cache
Check

Send
response

Build
friends list

Build
Suggestions

Build
Newsfeed

Other developers’ changed code

CI pipelines can automate performance
testing

https://github.com/neu-se/CONFETTI/actions

Every commit: Run 10 minute
performance test on 5

benchmarks, repeating each test
5 times (25 concurrent jobs)

On Demand: Run 24 hour
performance test on 5

benchmarks, repeating each test
20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions

CI pipelines can automate benchmarking

On Demand: Run 24 hour
performance test on 5

benchmarks, repeating each test
20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions

https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions

Attributes of effective CI processes
• Policies:

• Do not allow builds to remain broken for a long
time

• CI should run for every change
• CI should not completely replace pre-commit

testing

• Infrastructure:
• CI should be fast, providing feedback within

minutes or hours
• CI should be repeatable (deterministic)

Effective CI processes are run often enough
to reduce debugging effort
• Failed CI runs indicate a bug was

introduced, and caught in that run
• More changes per-CI run require more

manual debugging effort to assign
blame

• A single change per-CI run pinpoints the
culprit

Effective CI processes allocate enough resources
to mitigate flaky tests
• Flaky tests might be dependent on timing (failing due to timeouts)
• Running tests without enough CPU/RAM can result in increased flaky

failure rates and unreliable builds

“The Effects of Computational Resources on Flaky Tests”, Silva et al

https://arxiv.org/abs/2310.12132

Challenges and Solutions for Repeatable Builds
• Which commands to run to produce an executable?

(build systems)
• How to link third-party libraries? (dependency

managers)
• How to specify system-level software

requirements? (containers)
• How to specify infrastructure requirements?

(Infrastructure as code)

Build Systems Orchestrate Software
Engineering Tasks
• “Orchestrate” -> Execute in the right order, ideally with concurrency, example

tasks:
• Installing dependencies
• Compiling the code
• Running static analysis
• Generating documentation
• Running tests
• Creating artifacts for customers
• Deploying Code

• Example build systems: xMake, ant, maven, gradle, npm…

• In most modern languages, the build system itself also serves as the
dependency manager

Dependency Managers Organize External
Dependencies
• Addresses this problem: “Before you compile this code, install

commons-lang from the Apache website”
• Declare a dependency using coordinates (unique ID of a package plus

version)
• Packages are archived in common repositories; fetched/linked by

dependency manager
• Dependency managers handle transitive dependencies
• Examples: Maven, NPM, pip, cargo, apt

Specify and Depend on Package Versions with
Care
• Semantic Versioning is often expected:

• Library maintainers expected to indicate breaking
changes with version numbers

• Dependency consumers can specify constraints on
versions (e.g. accept 2.0.x)

Distribution of dependencies of all packages in NPM over time (2023, Pinckney et al)

https://semver.org/
https://semver.org/

Continuous Integration Service Models
• Self-hosted/managed on-premises or in cloud
• Jenkins

• Fully cloud managed
• GitHub Actions, CircleCI, Travis, many more…
• Billing model: pay per-build-minute running on SaaS

infrastructure
• “Self-hosted runners” run builds on your own

infrastructure, usually “free”

13.2 Continuous Delivery

28

Continuous Delivery
• “Faster is safer”: Key values of continuous delivery

• Release frequently, in small batches
• Maintain key performance indicators to evaluate the impact

of updates
• Phase roll-outs
• Evaluate business impact of new features

Continuous Delivery is about deciding which
new features to deliver, and when
• You have a large system with many engineers

working on new features (and bug fixes )
• When a new feature or fix is ready, how do you roll

it out to your users?

A continuous-delivery process is also a
software pipeline

0…………….

Code Review Style Check

Compile

Unit Test

Prepare
Deployment

Integration Test

Load Test

Automate this centrally, provide a central record of results

KPIsEnd-to-end Test

Develop Build Test Deploy Monitor
0…………….

Continuous Delivery does not mean Immediate
Delivery
• Even if you are deploying every day

(“continuously”), you still have some latency
• A new feature I develop today won't be released

today
• But, a new feature I develop today can begin the

release pipeline today (minimizes risk)
• Release Engineer: gatekeeper who decides when

something is ready to go out, oversees the actual
deployment process

Ways to mitigate deployment risks
• Use a realistic staging environment
• Use post-deployment monitoring
• Use split deployments
• Use tools to automate deployment tasks

33

Build a staging environment to qualify
features for delivery

Testing
Environment

Staging Environment Production Environment

Beta/Dogfooding User Requests
Developer

Environments

Revisions are “promoted” towards production

Q/A takes place in each stage (including production!)

Split Deployments Mitigate Risk
• Lower risk if a problem occurs in

staging than in production
• Or deploy to a small set of users

before deploying more widely
• Names:

• “Eat your own dogfood”
• Beta/Alpha testers: external vs internal
• A/B testing: version A vs version B
• "canaries“

Post-delivery monitoring mitigates risk
• Consider both direct (e.g. business) metrics, and indirect

(e.g. system) metrics
• Hardware
• Voltages, temperatures, fan speeds, component health
• OS
• Memory usage, swap usage, disk space, CPU load
• Middleware
• Memory, thread/db connection pools, connections, response

time
• Applications
• Business transactions, conversion rate, status of 3rd party

components

Continuous Delivery Tools
• Simplest tools deploy from a branch to a service (e.g. Render.com,

Heroku)
• More complex tools:

• Auto-deploys from version control to a staging environment + promotes through
release pipeline

• Monitors key performance indicators to automatically take corrective actions
• Example: “Spinnaker” (Open-Sourced by Netflix, c 2015)

Example CD pipeline from Spinnaker’s documentation: https://spinnaker.io/docs/concepts/#application-deployment

https://spinnaker.io/
https://spinnaker.io/docs/concepts/#application-deployment
https://spinnaker.io/docs/concepts/#application-deployment
https://spinnaker.io/docs/concepts/#application-deployment

Tools for Monitoring Deployments
• Nagios (c 2002): Agent-based architecture (install agent on each

monitored host), extensible plugins for executing “checks” on hosts
• Track system-level metrics, app-level metrics, user-level KPIs

Monitoring can help identify operational issues

Grafana (AGPL, c 2014) InfluxDB (MIT license, c 2013)

Continuous Delivery Tools Can Take Automated
Actions
• Example: Automated roll-back of updates at Netflix

based on "streams-per-second" (SPS)

https://www.youtube.com/watch?v=qyzymLlj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag

Monitoring Services Can Take Automated Actions

From Monitoring to Observability
• Understanding what is going on inside of our deployed

systems by visualizing internal metrics

Example dashboard by DataDog:
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/

https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/
https://www.datadoghq.com/blog/gke-dashboards-integration-improvements/

Beware of Metrics
• McNamara Fallacy

• Measure whatever can be easily measured
• Disregard that which cannot be measured

easily
• Presume that which cannot be measured

easily is not important
• Presume that which cannot be measured

easily does not exist

How should we allocate our testing
resources?
• How much unit testing should be required?
• When should we do code reviews?
• How often should we do integration tests?
• Different organizations may make different choices

Continuous Delivery works with or without
TDD
• Test driven development (“Test first”)

• Write and maintain tests per-feature (manual! hard!)
• Unit tests help locate bugs (at unit level)
• Integration/system tests also needed to locate

interaction-related faults
• Test suites can become larger and larger

• Continuous delivery work with smaller test suites
• Write and maintain high-level observability metrics
• Deploy features one-at-a-time, look for canaries in

metrics
• Write fewer integration/system tests

CI at scale: Google Test Automation
Platform - TAP (2020)
• Massive continuous build of entire Google codebase

• in a dedicated data center
• 50,000 unique changes per-day, 4 billion test cases per-day

• Engineers submit unit tests along with their changes
• Block merge if they fail

• If they pass, change is put in the codebase.
• visible to entire company!
• average wait time to this point: 11 minutes

• Then (asynchronously) run all affected integration tests
• If any fail, change is sent back to a human on the submitter's team

(the “build cop”) who must act immediately to roll-back or fix.

“Software Engineering at Google: Lessons Learned from
Programming Over Time,” Wright, Winters and Manshreck, 2020
(O’Reilly), pp. 494-497

Facebook: "Move fast and break things"
• de-prioritize unit tests
• Emphasis on getting features to users quickly
• Strategy: push many small changes to fractions of

the user base. ("split deployments")

50

Deployment Example: Facebook.com
• Pre-2016

~1 week of development

3x Daily

Stabilize

release branch

Weekly

3 days

All changes from week
that are ready for release

Release Branch
4 days All changes that survived stabilizing

Developers working in their own branch

Your change doesn’t go out unless
you’re there that day at that time to

support it!

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production “When in doubt back out”

Facebook used to have an elaborate system
of branches
• dev branches got merged into master,
• then once a week all changes from the past week were

pulled into a release branch (often 10,000 changes per
week)

• For 3 days they “stabilized” the release branch – find
changes that are causing very bad behavior and back
them out. (manual process!!)

• Then for the last 4 days of the week, every change that
survived that stabilization got individually pushed to
production batched so that this happens 3x/day.

• Important to do small deploys so that you could isolate
bad changes.

Deployment Example

• Chuck Rossi, Director Software Infrastructure &
Release Engineering @ Facebook

“Our main goal was to make sure that the
new system made people’s experience
better — or at least, didn’t make it worse.
After a year of planning and development,
over the course of three days we enabled
100% of our production web servers to
run code deployed directly from master”

“Rapid release at massive scale” https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Post-2016: truly continuous releases from
master branch

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Post-2016: Truly Continuous Releases from
Master Branch (excerpts from blog post)
1. First, diffs that have passed a series of automated internal tests and land in master

are pushed out to Facebook employees.

2. In this stage, get push-blocking alerts if we’ve introduced a regression, and an
emergency stop button lets us keep the release from going any further.

3. If everything is OK, push the changes to 2 percent of production, where again we
collect signal and monitor alerts, especially for edge cases that our testing or
employee dogfooding may not have picked up.

4. Finally, roll out to 100 percent of production, where our Flytrap tool aggregates user
reports and alerts us to any anomalies.

5. Many of the changes are initially kept behind feature flags, which allows to roll out
mobile and web code releases independently from new features, helping to lower
the risk of any particular update causing a problem.

6. If we do find a problem, simply switch the feature off rather than revert back to a
previous version or fix forward.

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

What not to do: Failed Deployment at Knight
Capital “In the week before go-live, a Knight engineer manually

deployed the new RLP code in SMARS to its 8 servers. However,
he made a mistake and did not copy the new code to one of the
servers. Knight did not have a second engineer review the
deployment, and neither was there an automated system to
alert anyone to the discrepancy. “

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

What could Knight capital have done better?
• Use capture/replay testing instead of driving

market conditions in a test
• Avoid including “test” code in production

deployments
• Automate deployments
• Define and monitor risk-based KPIs
• Create checklists for responding to incidents

Review
• By now, you should be able to…

• Describe how continuous integration helps to
catch errors sooner in the software lifecycle

• Describe strategies for performing quality-
assurance on software as and after it is delivered

• Understand how continuous delivery can work
with or without TDD (test driven development) as
a quality assurance strategy

	CS 4530: Fundamentals of Software Engineering�Module 13: Continuous Development
	Learning objectives for this lesson
	Review: The Agile Model Reduces Risk by Embracing Change (~2000)
	Agile relies on a variety of quality-assurance processes
	In this module, we'll focus on CI/CD
	Example: Some bugs slip through testing, even in highly-regulated industries
	CI/CD practices improve code quality and dev velocity
	13.1: Continuous Integration
	Continuous Integration (CI) provides global feedback on local changes
	A CI process is a software pipeline
	CI may be triggered by commits, pull requests, or other actions
	Automating Feedback Loops is Powerful
	Typical CI pipeline
	You could set up multiple CI processes
	Continuous Integration is Highly Configurable
	CI pipelines can automate performance testing
	CI pipelines can automate benchmarking
	Attributes of effective CI processes
	Effective CI processes are run often enough to reduce debugging effort
	Effective CI processes allocate enough resources to mitigate flaky tests
	Challenges and Solutions for Repeatable Builds
	Build Systems Orchestrate Software Engineering Tasks
	Dependency Managers Organize External Dependencies
	Specify and Depend on Package Versions with Care
	Continuous Integration Service Models
	13.2 Continuous Delivery
	Continuous Delivery
	Continuous Delivery is about deciding which new features to deliver, and when
	A continuous-delivery process is also a software pipeline
	Continuous Delivery does not mean Immediate Delivery
	Ways to mitigate deployment risks
	Build a staging environment to qualify features for delivery
	Split Deployments Mitigate Risk
	Post-delivery monitoring mitigates risk
	Continuous Delivery Tools
	Tools for Monitoring Deployments
	Monitoring can help identify operational issues
	Continuous Delivery Tools Can Take Automated Actions
	Monitoring Services Can Take Automated Actions
	From Monitoring to Observability
	Beware of Metrics
	How should we allocate our testing resources?
	Continuous Delivery works with or without TDD
	CI at scale: Google Test Automation Platform - TAP (2020)
	Facebook: "Move fast and break things"
	Deployment Example: Facebook.com
	Facebook used to have an elaborate system of branches
	Deployment Example
	Post-2016: truly continuous releases from master branch
	Post-2016: Truly Continuous Releases from Master Branch (excerpts from blog post)
	What not to do: Failed Deployment at Knight Capital
	What could Knight capital have done better?
	Review

